
 A Joint SLC/RealEyes Production

www.realeyes.com
www.streaminglearningcenter.com

http://www.realeyes.com
http://www.streaminglearningcenter.com

● Understanding the problem
● Reducing latency

○ Delivery
○ Player
○ Content
○ Up and Coming
○ Some test results

● Time to video play
○ Important to all viewers

● Latency behind live stream
○ Important to some live events
○ Critical to some events involving betting or auctioning

● Time to video play
○ Important to all viewers

● Latency behind live stream
○ Important to some live events
○ Critical to some events involving betting or auctioning

● Standards
○ Traditional: 30+s
○ Low Latency: 10s or less (1-2s diff from TV)
○ Ultra Low-Latency: 3s or less

LOW
LATENCY

HIGH
QUALITY

LARGE
SCALE

● PLAYER
○ Initial Buffer
○ Bitrate Selection
○ Manifest Size
○ Bandwidth

● CONTENT
○ Segment Size
○ Bitrate
○ Encoding
○ Packaging

● DELIVERY
○ Protocol
○ Caching
○ Scale

● Content generation & notification delay

Segment1 Segment2

6 seconds
[Update Manifest]

6 seconds

2 sec KFI

● Content
○ Segment Size
○ KFI

● Delivery: Persistent vs Non-Persistent
○ Protocol
○ CDN: (massive impact at scale)

■ Encoder > Ingest > Transcoder > Mid Tier > Origin Shield > Edge Cache > Client | Buffer
■ Encoder > Packager > Ingest > Origin Ingest/Cache > Edge Cache > Client | Buffer

● Player
○ Pushback from live
○ Initial buffer

● 1-2 sec Segment
● Rolling DVR
● Start playback after 1-6 segments

● Buffer Starve

● More Overhead:
○ Network
○ CPU/GPU

● Encoding/Packaging
○ Segmement & KFI

● More Caching Overhead

● Delivery Race Conditions

1, 2, 3, Testing...Testing….is this thing on?

● Enable configuration based test library
○ What to play
○ Initial bitrate
○ Start time

● Applications implement:
○ QOS display
○ Unified remote logging for test aggregation

● Let’s look at the JSON file:
http://office.realeyes.com/demos/smw-2017-data/data.json

● Made Native apps for Roku, Android, & FireTV
● Reporting Data:

https://docs.google.com/spreadsheets/d/1iBTGgRcMvh0nCRsP9MpwYRo5tdH
65ZmjZCzeKqsUGAc/edit?usp=sharing

● Browser application for desktop: http://smw-demo.realeyes.com/player/

http://office.realeyes.com/demos/smw-2017-data/data.json
https://docs.google.com/spreadsheets/d/1iBTGgRcMvh0nCRsP9MpwYRo5tdH65ZmjZCzeKqsUGAc/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1iBTGgRcMvh0nCRsP9MpwYRo5tdH65ZmjZCzeKqsUGAc/edit?usp=sharing
http://smw-demo.realeyes.com/player

Segment/KFI 7800 6000 4500 3000 2000 730 365

Startup Latency

- Browser 1403ms 1752ms 869ms 557ms 616ms 637ms 646ms

- iOS 753ms 472ms 460ms 474ms 444ms 491ms 448ms

- Android 2486ms 1916ms 1746ms 3207ms 1670ms 2567ms 2152ms

- Roku 2935ms 2058ms 2227ms 1495ms 1672ms 1801ms 1658ms

NEED SCREEN SHOTS OF APS

30 Minutes or less or its FREE!

● Non-Persistent

● Persistent

● Non-Persistent
○ Generally TCP
○ ByteRange & Chunking

■ HTTP 1.1

● Persistent

● Non-Persistent
○ Generally TCP
○ ByteRange & Chunking

■ HTTP 1.1

● Persistent
○ Web Sockets
○ WRTC
○ UDP
○ HTTP 2
○ SRT
○ QUIC

● Non-Persistent
○ Generally TCP
○ ByteRange & Chunking

■ HTTP 1.1

● Persistent
○ Web Sockets
○ WRTC
○ UDP
○ HTTP 2
○ SRT
○ QUIC

○ CMAF Chunks
○ LHLS

○ All about the infrastructure
○ Akamai Advanced Media Solutions: Media Services Live 4.0

● HTTP/TCP - Same old stuff
○ Reliable
○ Slow

● Socket
○ Faster
○ More complex

Don’t hate the player, hate the game

● Why important
○ Players download a number of segments before they start playback
○ Longer segments take longer to download

● Apple’s recommendations
○ 6 second segment size/2 second keyframe

● Buffer
○ May need to increase number of segments received before playback starts to avoid buffering
○ Recommend 3-6 seconds of chunks (more on this later)

Segment/KFI .5/.5 1/1 2/2 3/3 4/2 5/1 6/2

PSNR Avg: 40.44
Max: 84.44

Avg: 41.11
Max: 84.82

Avg: 41.42
Max: 85.48

Avg: 41.53
Max: 85.87

Avg: 41.42
Max: 85.48

Avg: 41.11
Max: 84.82

Avg: 41.42
Max: 85.48

Startup Latency

- Browser 321ms 257ms 355ms 416ms 440ms 349ms 333ms

- iOS 777ms 503ms 435ms 497ms 445ms 447ms 460ms

- FireTV 3188ms 2626ms 2487ms 1870ms 1764ms 1962ms 1499ms

- Roku 2935ms 2149ms 1800ms 2051ms 1984ms 1713ms 1954ms

● Number of segments before playback starts
○ General practice

■ Browser - 1-3 segments
■ iOS - 3 segments
■ Android - 3 segments
■ Roku - 3 segments
■ With 6 second segments, that’s 18 seconds of video

○ Our tests
■ Segment size to 1 second
■ Varied number of segments

Content is king...unless the queen says otherwise

● If transmuxing, greater number of keyframes and segments may impact CPU
requirements

● Modify chunks in real time HLS playlist
○ Less is better but all depends on segment size - min 10 segments
○ Wowza recommends 12 seconds of data in each playlist

● May increase caching needs
○ Need to cache more segments to ease access

○ Wowza recommends 50 seconds of segments

● Perspective - Apple recommends:
○ 2 Mbps stream retrieved first for Wi-Fi/Ethernet
○ 730 kbps variant for cellular

● Many encoding tools don’t implement this
○ Generally done as first rendition in master

● Also can be tied to player logic (recommended)

● Can make significant difference on startup latency

● What is it? Streaming data transfer mechanism that enables transfers of
chunks within a segment before the complete segment is retrieved

○ Player can start to receive portions of a segment before it’s delivered from the encoder

● How to implement?
○ HTTP 1.1 spec

■ Takes the concept byte range mixed with segments

[TRANSPORT LAYER]

● Content generation & notification delay

Segment1 Segment2

6 seconds
[Update Manifest]

6 seconds

2 sec KFI

●

[MEDIA LAYER]

● Add segment URLs to the playlist before actually produced

● When combined with chunked transfer coding, ensures that all segments are
retrieved as quickly as possible

● Using predictive tags impacts ability for discontinuities & seg duration

● ABR calculation limitations

● Need an Origin Shield!!

● Delivered using HTTP/1.1 Chunked Transfer Coding
● Pre-Announce Segments - roughly 2-3 in the future
● Connections stay open until bits are received

○ First receives MPEG Transport Stream (TS) segment header
for the next currently unavailable segment

○ Then bits are streamed in as they are created
○ When HTTP2 becomes broader spectrum will reduce socket overhead

● CDN Vendor Needs to Support Chunked Transfer Coding
● Solid CDN Origin Shield Needed
● Side benefit of pre-warms cache for replay content

https://medium.com/@periscopecode/introducing-lhls-media-streaming-eb6212948bef

https://medium.com/@periscopecode/introducing-lhls-media-streaming-eb6212948bef

https://medium.com/@periscopecode/introducing-lhls-media-streaming-eb6212948bef

https://medium.com/@periscopecode/introducing-lhls-media-streaming-eb6212948bef

Is it tomorrow...or yesterday? Depends on your perspective.

● HTTP 2
● SRT
● WOWZ
● QUIC
● Aspera: FASP

● David Hassoun
david@realeyes.com

● Jun Heider
jun@realeyes.com

● Jan Ozer
jozer@mindspring.com

mailto:david@realeyes.com
mailto:jun@realeyes.com
mailto:jozer@mindspring.com

